Polar, Parametric & Vector Review

CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a)
$$c(t) = (t^2, t+3)$$

(b)
$$c(t) = (t^2, t - 3)$$

(c)
$$c(t) = (t^2, 3-t)$$

(d)
$$c(t) = (t - 3, t^2)$$

2. Find parametric equations for the line through P = (2, 5) perpendicular to the line y = 4x - 3.

(3.) Find parametric equations for the circle of radius 2 with center (1, 1). Use the equations to find the points of intersection of the circle with the x- and y-axes.

4. Find a parametrization c(t) of the line y = 5 - 2x such that c(0) = (2, 1).

5. Find a parametrization $c(\theta)$ of the unit circle such that c(0) =

6. Find a path c(t) that traces the parabolic arc $y = x^2$ from (0, 0) to (3, 9) for $0 \le t \le 1$.

7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7)for $0 \le t \le 1$.

8. Sketch the graph $c(t) = (1 + \cos t, \sin 2t)$ for $0 \le t \le 2\pi$ and draw arrows specifying the direction of motion.

In Exercises 9–12, express the parametric curve in the form y = f(x).

9.
$$c(t) = (4t - 3, 10 - t)$$

9.
$$c(t) = (4t - 3, 10 - t)$$
 10. $c(t) = (t^3 + 1, t^2 - 4)$

11.
$$c(t) = \left(3 - \frac{2}{t}, t^3 + \frac{1}{t}\right)$$
 12. $x = \tan t, \quad y = \sec t$

$$12. \ x = \tan t, \quad y = \sec$$

In Exercises 13-16, calculate dy/dx at the point indicated.

13.
$$c(t) = (t^3 + t, t^2 - 1), t = 3$$

$$(14) c(\theta) = (\tan^2 \theta, \cos \theta), \quad \theta = \frac{\pi}{4}$$

15.
$$c(t) = (e^t - 1, \sin t), \quad t = 20$$

$$(16)$$
 $c(t) = (\ln t, 3t^2 - t), P = (0, 2)$

17. $\Box HS$ Find the point on the cycloid $c(t) = (t - \sin t, 1 - \cos t)$ where the tangent line has slope $\frac{1}{2}$.

18. Find the points on $(t + \sin t, t - 2\sin t)$ where the tangent is vertical or horizontal.

19. Find the equation of the Bézier curve with control points

$$P_0 = (-1, -1), \quad P_1 = (-1, 1), \quad P_2 = (1, 1), \quad P_3(1, -1)$$

20. Find the speed at $t = \frac{\pi}{4}$ of a particle whose position at time t seconds is $c(t) = (\sin 4t, \cos 3t)$.

21. Find the speed (as a function of t) of a particle whose position at time t seconds is $c(t) = (\sin t + t, \cos t + t)$. What is the particle's maximal speed?

Find the length of $(3e^t - 3, 4e^t + 7)$ for $0 \le t \le 1$.

In Exercises 23 and 24, let $c(t) = (e^{-t}\cos t, e^{-t}\sin t)$.

23. Show that c(t) for $0 \le t < \infty$ has finite length and calculate its value.

24. Find the first positive value of t_0 such that the tangent line to $c(t_0)$ is vertical, and calculate the speed at $t = t_0$.

25. $\angle RS$ Plot $c(t) = (\sin 2t, 2\cos t)$ for $0 \le t \le \pi$. Express the length of the curve as a definite integral, and approximate it using a computer algebra system.

26. Convert the points (x, y) = (1, -3), (3, -1) from rectangular to polar coordinates.

(27.) Convert the points $(r, \theta) = (1, \frac{\pi}{6}), (3, \frac{5\pi}{4})$ from polar to rectangular coordinates.

28. Write $(x + y)^2 = xy + 6$ as an equation in polar coordinates.

29. Write $r = \frac{2\cos\theta}{\cos\theta - \sin\theta}$ as an equation in rectangular coordinates.

30. Show that $r = \frac{4}{7\cos\theta - \sin\theta}$ is the polar equation of a line.

31. GU Convert the equation

$$9(x^2 + y^2) = (x^2 + y^2 - 2y)^2$$

to polar coordinates, and plot it with a graphing utility.

Calculate the area of the circle $r=3\sin\theta$ bounded by the rays $\theta=\frac{\pi}{3}$ and $\theta=\frac{2\pi}{3}$.

33. Calculate the area of one petal of $r = \sin 4\theta$ (see Figure 1).

34. The equation $r = \sin(n\theta)$, where $n \ge 2$ is even, is a "rose" of 2npetals (Figure 1). Compute the total area of the flower, and show that it does not depend on n.

FIGURE 1 Plot of $r = \sin(n\theta)$.

35. Calculate the total area enclosed by the curve $r^2 = \cos \theta e^{\sin \theta}$ (Figure 2).

CHAPTER 11 | PARAMETRIC EQUATIONS, POLAR COORDINATES, AND VECTOR FUNCTIONS

FIGURE 2 Graph of $r^2 = \cos \theta e^{\sin \theta}$.

36. Find the shaded area in Figure 3.

- 37. Find the area enclosed by the cardioid $r = a(1 + \cos \theta)$, where a > 0.
- 38. Calculate the length of the curve with polar equation $r=\theta$ in Figure 4.

In Exercises 39-44, let $\mathbf{v} = \langle -2, 5 \rangle$ and $\mathbf{w} = \langle 3, -2 \rangle$.

- (39) Calculate 5w 3v and 5v 3w.
- 40. Sketch \mathbf{v} , \mathbf{w} , and $2\mathbf{v} 3\mathbf{w}$.
- 41. Find the unit vector in the direction of v.
- 42. Find the length of v + w.
- 43. Express i as a linear combination rv + sw.
- 44. Find a scalar α such that $\|\mathbf{v} + \alpha \mathbf{w}\| = 6$.
- (45) If P = (1, 4) and Q = (-3, 5), what are the components of \overrightarrow{PQ} ? What is the length of \overrightarrow{PQ} ?
- 46. Let A = (2, -1), B = (1, 4), and P = (2, 3). Find the point Q such that \overrightarrow{PQ} is equivalent to \overrightarrow{AB} . Sketch \overrightarrow{PQ} and \overrightarrow{AB} .

- Find the vector with length 3 making an angle of $\frac{7\pi}{4}$ with the positive x-axis.
- 48. Calculate 3(i-2j)-6(i+6j).
- **49.** Find the value of β for which $\mathbf{w} = \langle -2, \beta \rangle$ is parallel to $\gamma = \langle 4, -3 \rangle$.
- 50. Let $\mathbf{r}_1(t) = \mathbf{v}_1 + t\mathbf{w}_1$ and $\mathbf{r}_2(t) = \mathbf{v}_2 + t\mathbf{w}_2$ be parametrizations of lines \mathcal{L}_1 and \mathcal{L}_2 . For each statement (a)–(e), provide a proof if the statement is true and a counterexample if it is false.
- (a) If $\mathcal{L}_1 = \mathcal{L}_2$, then $\mathbf{v}_1 = \mathbf{v}_2$ and $\mathbf{w}_1 = \mathbf{w}_2$.
- (b) If $\mathcal{L}_1 = \mathcal{L}_2$ and $\mathbf{v}_1 = \mathbf{v}_2$, then $\mathbf{w}_1 = \mathbf{w}_2$,
- (c) If $\mathcal{L}_1 = \mathcal{L}_2$ and $\mathbf{w}_1 = \mathbf{w}_2$, then $\mathbf{v}_1 = \mathbf{v}_2$.
- (d) If \mathcal{L}_1 is parallel to \mathcal{L}_2 , then $w_1 = w_2$.
- (e) If \mathcal{L}_1 is parallel to \mathcal{L}_2 , then $\mathbf{w}_1 = \lambda \mathbf{w}_2$ for some scalar λ .
- 51. Sketch the vector sum $\mathbf{v}=\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3$ for the vectors in Figure 5(A).

- 52. Sketch the sums $v_1+v_2+v_3$, v_1+2v_2 , and v_2-v_3 for the vectors in Figure 5(B).
- 53. Use vectors to prove that the line connecting the midpoints of two sides of a triangle is parallel to the third side.
- 54. Calculate the magnitude of the forces on the two ropes in Figure 6.

FIGURE 6

- 55. A 50-kg wagon is pulled to the right by a force F_1 making an angle of 30° with the ground. At the same time the wagon is pulled to the left by a horizontal force F_2 .
- (a) Find the magnitude of \mathbf{F}_1 in terms of the magnitude of \mathbf{F}_2 if the wagon does not move.
- (b) What is the maximal magnitude of F_1 that can be applied to the wagon without lifting it? $\label{eq:problem} \begin{subarray}{l} \end{subarray}$
- 56. Find the angle between v and w if ||v + w|| = ||v|| = ||w||.
- 57. Find $\|\mathbf{e} 4\mathbf{f}\|$, assuming that \mathbf{e} and \mathbf{f} are unit vectors such that $\|\mathbf{e} + \mathbf{f}\| = \sqrt{3}$.

58. Find the area of the parallelogram spanned by vectors v and w such that $\|\mathbf{v}\| = \|\mathbf{w}\| = 2$ and $\mathbf{v} \cdot \mathbf{w} = 1$.

In Exercises 59-64, calculate the derivative indicated.

(59)
$$\mathbf{r}'(t)$$
, $\mathbf{r}(t) = (1 - t, t^{-2})$

60.
$$\mathbf{r}'''(t)$$
, $\mathbf{r}(t) = \langle t^3, 4t^2 \rangle$

(61)
$$\mathbf{r}'(0)$$
, $\mathbf{r}(t) = \langle e^{2t}, e^{-4t^2} \rangle$

62.
$$\mathbf{r}''(-3)$$
, $\mathbf{r}(t) = \langle t^{-2}, (t+1)^{-1} \rangle$

$$(\widehat{63}) \ \frac{d}{dt} e^t \langle 1, t \rangle$$

64.
$$\frac{d}{d\theta} \mathbf{r}(\cos \theta)$$
, $\mathbf{r}(s) = \langle s, 2s \rangle$

In Exercises 65 and 66, calculate the derivative at t = 3, assuming that

$$r_1(3) = \langle 1, 1 \rangle, \quad r_2(3) = \langle 1, 1 \rangle$$

$$\mathbf{r}_{1}'(3) = \langle 0, 0 \rangle, \quad \mathbf{r}_{2}'(3) = \langle 0, 2 \rangle$$

$$(65) \frac{d}{dt} (6\mathbf{r}_1(t) - 4 \cdot \mathbf{r}_2(t)) \qquad \qquad 66. \frac{d}{dt} \left(e^t \mathbf{r}_2(t) \right)$$

66.
$$\frac{d}{dt} \left(e^l \mathbf{r}_2(t) \right)$$

(7) Calculate
$$\int_0^3 \langle 4t + 3, t^2 \rangle dt$$
.

Odd Answers!

Chapter 11 Review

1. (a), (c)

3. $c(t) = (1 + 2\cos t, 1 + 2\sin t)$. The intersection points with the y-axis are $(0, 1 \pm \sqrt{3})$. The intersection points with the x-axis are $(1 \pm \sqrt{3}, 0)$

5.
$$c(\theta) = (\cos(\theta + \pi), \sin(\theta + \pi))$$
 7. $c(t) = (1 + 2t, 3 + 4t)$

9.
$$y = -\frac{x}{4} + \frac{37}{4}$$
 11. $y = \frac{8}{(3-x)^2} + \frac{3-x}{2}$

13.
$$\frac{dy}{dx}\Big|_{t=3} = \frac{3}{14}$$
 15. $\frac{dy}{dx}\Big|_{t=0} = \frac{\cos 20}{e^{20}}$

17. $(0, 1), (\pi, 2), (0.13, 0.40), \text{ and } (1.41, 1.60)$

19.
$$x(t) = -2t^3 + 4t^2 - 1$$
, $y(t) = 2t^3 - 8t^2 + 6t - 1$

21.
$$\frac{ds}{dt} = \sqrt{3 + 2(\cos t - \sin t)}$$
; maximal speed: $\sqrt{3 + 2\sqrt{2}}$

23. $s = \sqrt{2}$

25.

$$s = 2 \int_0^{\pi} \sqrt{\cos^2 2t + \sin^2 t} \, dt \approx 6.0972$$

68. Calculate
$$\int_0^{\pi} \langle \sin \theta, \theta \rangle d\theta$$
.

69. A particle located at (1, 1) at time t = 0 follows a path whose velocity vector is $\mathbf{v}(t) = (1, t)$. Find the particle's location at t = 2.

70. Find the vector-valued function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ in \mathbb{R}^2 satisfying $\mathbf{r}'(t) = -\mathbf{r}(t)$ with initial conditions $\mathbf{r}(0) = \langle 1, 2 \rangle$.

(71) Calculate $\mathbf{r}(t)$ assuming that

$$\mathbf{r}''(t) = (4 - 16t, 12t^2 - t), \quad \mathbf{r}'(0) = (1, 0), \quad \mathbf{r}(0) = (0, 1)$$

72. Solve $\mathbf{r}''(t) = \langle t^2 - 1, t + 1 \rangle$ subject to the initial conditions $\mathbf{r}(0) = \langle 1, 0 \rangle$ and $\mathbf{r}'(0) = \langle -1, 1 \rangle$.

(73) A projectile fired at an angle of 60° lands 400 m away. What was its initial speed?

74. A force F = (12t + 4, 8 - 24t) (in newtons) acts on a 2-kg mass. Find the position of the mass at t = 2 s if it is located at (4, 6) at t = 0and has initial velocity (2, 3) in m/s.

75. Find the unit tangent vector to $\mathbf{r}(t) = (\sin t, t)$ at $t = \pi$.

27. $(1, \frac{\pi}{6})$ and $(3, \frac{5\pi}{4})$ have rectangular coordinates $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ and $\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$

29.
$$\sqrt{x^2 + y^2} = \frac{2x}{x - y_0}$$
 31. $r = 3 + 2\sin\theta$

33. $A=\frac{\pi}{16}$ 35. $e-\frac{1}{e}$ Note: One needs to double the integral from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ in order to account for both sides of the graph.

37.
$$A = \frac{3\pi a^2}{2}$$

39.
$$\langle 21, -25 \rangle$$
 and $\langle -19, 31 \rangle$ 41. $\left(\frac{-2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \right)$

43.
$$\mathbf{i} = \frac{2}{11}\mathbf{v} + \frac{5}{11}\mathbf{w}$$
 45. $\overrightarrow{PQ} = \langle -4, 1 \rangle$; $\|\overrightarrow{PQ}\| = \sqrt{17}$

47.
$$\left(\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)$$
 49. $\beta = \frac{3}{2}$

55.
$$\|\mathbf{F}_1\| = \frac{2\|\mathbf{F}_2\|}{\sqrt{3}}; \|\mathbf{F}_1\| = 980 \text{ N}$$

57.
$$\|\mathbf{e} - 4\mathbf{f}\| = \sqrt{13}$$

57.
$$\|\mathbf{e} - 4\mathbf{f}\| = \sqrt{13}$$

59. $\mathbf{r}'(t) = \langle -1, -2t^{-3} \rangle$ 61. $\mathbf{r}'(0) = \langle 2, 0 \rangle$

63.
$$\frac{d}{dt}e^{t}(1, t) = e^{t}(1, 1+t)$$

63.
$$\frac{d}{dt}e^{t}\langle 1, t \rangle = e^{t}\langle 1, 1+t \rangle$$

65. $\frac{d}{dt}\langle 6r_{1}(t) - 4r_{2}(t) \rangle|_{t=3} = \langle 0, -8 \rangle$
67. $\int_{0}^{3} \langle 4t + 3, t^{2} \rangle dt = \langle 27, 9 \rangle$

67.
$$\int_0^3 (4t+3, t^2) dt = (27, 9)$$

67.
$$\int_0^2 \left(4t+3, t^2\right) dt = \left(2t, 3\right)$$

69. (3, 3) 71. $\mathbf{r}(t) = \left(2t^2 - \frac{8}{3}t^3 + t, t^4 - \frac{1}{6}t^3 + 1\right)$

73.
$$v_0 \approx 67.279 \text{ m/s}$$

75.
$$\mathbf{T}(\pi) = \left\langle \frac{-1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}} \right\rangle$$